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Dissipative Boussinesq system of equations in the Bénard-Marangoni phenomenon
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By using the long-wavelength approximation, a system of coupled evolution equations for the
bulk velocity and the surface perturbations of a Bénard-Marangoni system is obtained. It includes
nonlinearity, dispersion, and dissipation, and it can be interpreted as a dissipative generalization of
the usual Boussinesq system of equations. As a particular case, a strictly dissipative version of the

Boussinesq system is obtained.
PACS number(s): 47.20.Bp, 47.35.+i

Several recent works [1-5] have dealt with the study of
oscillatory instabilities in systems of the Rayleigh-Bénard
and Bénard-Marangoni type. Considering a shallow fluid
layer bounded below by a plane stress-free perfect con-
ducting plate, and with a deformable upper free surface
where a constant heat flux is imposed, the linear sta-
bility analysis indicates that oscillatory motion sets in
when a certain critical combination of the Rayleigh and
Marangoni numbers is attained [1]. On the other hand,
it has been shown that, when the surface-tension effects
can be disregarded, and the Rayleigh number of the sys-
tem is at R = 30, appropriate surface deflections gov-
erned by the Korteweg—de Vries (KdV) equation may ap-
pear [2]. These results have been extended to the Bénard-
Marangoni system [3,4], where buoyancy is discarded. In
this case, appropriate surface disturbances propagate ac-
cording to the KdV equation when the Marangoni num-
ber of the system is at M = —12. The physical mech-
anism behind such sustained excitations is the balance,
at the critical point, between the energy dissipated by
viscous forces and that released either by buoyancy or by
a temperature-depending surface tension. In both cases,
out of the critical points, appropriate surface excitations
are governed by the Burgers equation [4,5].

The KdV equation is well known to govern long sur-
face waves in inviscid shallow fluids [6]. It corresponds
to a situation where nonlinearity and dispersion compen-
sate each other, making possible the existence of coher-
ent wave structures, like the solitary wave. The reductive
perturbation method of Taniuti [7], based on the concept
of stretching and in which waves propagating in only one
direction are sought from the beginning, is a common
approach to studying long waves in shallow water. From
the various possible stretchings of the coordinates, differ-
ent evolution equations may emerge as governing surface
disturbances. However, there is an alternative approach
to the theory of long waves in shallow water, which is
based on perturbative expansions in two small param-
eters [6]. One of them measures the smallness of the
amplitude perturbation, and the other is a measure of
the longness of the wavelength perturbation. This ap-
proach, as an intermediate step, and from different pos-
sible relations between the two perturbative parameters,

1063-651X/94/49(2)/1759(4)/$06.00 49

yields different systems of evolution equations describing
superimposed waves propagating in opposite directions.
Only when specializing to waves moving in a given di-
rection, do equations like breaking wave and KdV show
up. A perturbative scheme of this kind has not been used
to study surface excitations in Bénard systems. Conse-
quently, for these systems, the more general evolution
equations, wherefrom Burgers and KdV equations are
obtained, have not been found.

In this paper, instead of using the reductive pertur-
bation method of Taniuti [7], we will proceed through a
perturbation scheme for the Bénard-Marangoni system
based on two perturbative parameters, leading to the so-
called long waves in shallow water approximation. By
this way, a new system of coupled evolution equations
will be found, involving the fluid velocity and the free-
surface displacement. This system will be interpreted as
a dissipative generalization of the Boussinesq equations.
When the Marangoni number assumes the critical value
M = —12, and a certain relation between the perturba-
tive parameters is assumed, it reduces, as we are going
to see, to the usual Boussinesq equations. A further re-
striction to waves moving in only one direction will lead
to the KAV equation. On the other hand, out of the crit-
ical point, and assuming a different relation between the
perturbative parameters, the dissipative generalization of
the Boussinesq equations reduces to a strictly dissipative
version of the Boussinesq equations. In this case, a re-
striction to waves moving in only one direction will lead
to the Burgers equation.

We now turn to the description of the basic equations
and boundary conditions. We consider a fluid bounded
below by a plane, stress-free, perfect thermally conduct-
ing plate at z = 0, and above by a deformable one-
dimensional free surface, which, at rest, lies at z = d.
The depth d will be supposed to be small enough so that
buoyancy can be neglected when compared to the effects
coming from the surface tension dependence on temper-
ature. In other words, we will be dealing with a Bénard-
Marangoni system. The equations that describe such a
system are

V.v=0, (1)
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v
P = —Vp+uViv +gp, (2)
dT
— =gVIT
= KVT, 3)
where 3‘% = g—t + v - V is the convective derivative,

v = (u,0,w) is the fluid velocity, and p is the pressure.
The density p, the viscosity u, and the thermal diffusiv-
ity coefficient k are supposed to be constant. The surface
tension 7 will be assumed to depend linearly on the tem-
perature:

T =101 —¥(T — To)], (4)

where v is a constant, and 7y, T are reference values for
the surface tension and the temperature, respectively.

The boundary conditions on the upper free surface z =
d + n(z,t) are (8]

N+ une =w, (5)

T

N3 7]:2: y
(6)

2p
(p _pa) - F (wz + uzni — MU, — T/zwz) =

14 (1 - TI:) (uz + wz) + 2pum; (wz - u:c) = N(Ta: + 77sz) y
(7)

F
77sz - Tz = ENv (8)

where F' is the normal heat flux, k is the thermal con-
ductivity, p, is a pressure exerted on the upper surface,

1
all of them supposed to be constant, and N = (1 + n2)?.
Subscripts denote partial derivatives with respect to the
corresponding coordinate.

On the lower plane z = 0, we assume stress-free bound-
ary conditions:

w=u, =0. (9)

Moreover, we will assume that the lower plate is at a
constant temperature 7 = Tj.
The static solution to the above equations is given by

p3=pa—pg(z—d),

T, =T ——E(z—d).
k
We consider now perturbations from this quiescent state.
The horizontal and vertical length scales of these pertur-
bations are supposed to be ! and a, respectively. Then,
we define two small parameters

a
Ea
which will be used to order the expansions. Before pro-

ceeding further, however, it is convenient to write the
equations, boundary conditions, and static solutions in a

5, (10)

€ =

dimensionless form. This is done by taking the original
variables (primed) to be

l

z' = lz, 2 =dz, t'= —t, (11a)
Co
7 = an, o =y, w' =2 w, (11b)
Co c06

where c2 = gd. Furthermore, four dimensionless parame-
ters appear: the Prandtl number o = p/pk; the Reynolds
number R = codp/p; the Bond number B = pgd? /7y, and
the Marangoni number M = yFd27y/kkp.

To obtain the nonlinear evolution of the surface per-
turbations in the shallow water theory, we expand all
variables in powers of z, keeping the terms that will con-
tribute to the evolution equations up to orders e¢ and
42. Despite being laborious, this procedure is straight-
forward, and for this reason we will only give the guide-
lines, omitting the details of the calculations. To start
with, we make the expansions

o0 oo

u = E 2" Uy, w= _s_ 2" w, ,

n=0 n=0

where u,, and w, are both functions of z and ¢. Then,
substituting them in Eq. (1), we get the relation

2 Ung

Wry1 = —6 nt+l’

Using the boundary conditions at z = 0, it is easy to
show that

Then, using the expansion
o0
P=ps+ Y 2"Pn
n=0

in Eq. (2), it is possible to obtain ug, u4, ue, and ps in
terms of up and po only. The other components of the
expansions will contribute to orders higher than € and §2,
and therefore they can be neglected.

Next, expanding the temperature according to

T:Ts+iz"9n,

n=0

and using Eq. (3) with the corresponding boundary con-
ditions, we can see that

0o =0, =04 =0=---=0.

Moreover, we can also obtain expressions for 83 and 65 in
terms of ug and po only. Now, Eq. (6) yields po in terms
of ug and 7. Consequently, it is possible to rewrite the
u’s, p’s, and 0’s in terms of ug and 7 only. Finally, using
the above results in Egs. (5) and (7), we obtain, up to
order € and 62, a coupled system of evolution equations
for ug and n:
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) M 6R *R?
Uot + €Uolor + C*Np — R (4 + —?T) Ugzs T+ r (uott + Mwt) + 120 (votte + Mott)
11 M 1 M
52|12 = — 82 (= 4+ =41) 72 =0, (12
) 30 (40 1)]uom ) (B+30+ )n (12)
SR ) 2 R2
M + Uoz + € (uon), + = (Yoat + Maz) = 5 Uozee + 50 (Yoztt + Maat) =0, (13)

where

=1-

- (14)

The velocity ug is only the first term in the expansion
of u, which is

=1up + a”sz + ﬁu
U= Uy 2 Uot T Tz R Ozz

2*R?
+527 (Uou + 'Ikt) + 0 (6(5, 53) .
The value averaged over the depth is

- R 52 R?
U =ug+ ‘SE (uot + nz) — > [ul)z:c — — (uoe + nzt)]

60
+0(66,63).
The inverse is
—a- 6% +*)+£ 7 +E( + )
Ug = U 6 Ne + Us 2 Uz 180 Nzt T Ugt

40 (e8,6°) .

Substituting this in Egs. (12) and (13), and using the
lowest-order equations in the @, term, we obtain (omit-
ting the tilde)

us + Cznz + €uuy, — % (4 + _]3‘1) Uge + 62A7]ztt = Oa
(15a)
N+ Uz + 6("“7): =0, (15b)

4 1 1 M 1
A—g—c—2<1+§)+ﬁ(l*'c—2-—40'>

(a2 (1- 1), s

Due to the presence of the u,, term in Eqgs. (15), this
system can be considered as a dissipative generalization
of the Boussinesq equations. When the Marangoni num-
ber is at the critical value M = —12, these equations
coincide with the usual Boussinesq system of equations

us + 0277:: + euuz + 62A"7mtt =0,
Nt + Uz + E(U"I)z =0.

(17a)
(17b)

-

In this case, by assuming that 62 ~ ¢, and by specializing
to waves moving, say, to the right, we can obtain, through
a standard procedure [6], the KdV equation

3 A
e+ cnz + e;cnnz + 025 Maae =0, (18)
where now
1/14 1/3 1
(= —=(2+=2). 19
A 5(3+80) 62(5+B) (19)

Let us now consider the case M # —12. Assuming that
§ = ¢, and neglecting terms of order 62 ~ €2, Eq. (15)
becomes

) M
ug + 2, + euug — & (4 + —3—) Uz = 0, (20a)
M+ uz + €(un), =0. (20b)

This is a strictly dissipative version of the Boussinesq
system, since the dispersive term is not present now. By
specializing again to waves moving to the right, we obtain
the Burgers equation
3c é M
— —— 4+ — =0. 21
e+ e + €M 2R( +3)7hz (21)

We now summarize the results obtained in this pa-
per. First, from a perturbative analysis, corresponding
to the long wave in the shallow water approximation,
we obtained a dissipative generalization of the Boussi-
nesq system of equations as governing the bulk velocity
and surface perturbations of a Bénard-Marangoni phe-
nomenon. This system of coupled evolution equations
includes nonlinearity, dispersion, and dissipation. The
predominance of any one of them depends on the rela-
tion between € and 4. Three cases are of special interest.
First, when M = —12, the dissipative term vanishes,
and assuming that 62 = ¢, the usual Boussinesq system
of equations is obtained. Second, when the Marangoni
number is far enough from the critical value, that is,
when M + 12 = O(1), and assuming now that § = ¢,
the dissipative term dominates the dispersive one. Then,
by neglecting the dispersive term we get Eq. (20), which
is a strictly dissipative version of the Boussinesq system
of equations. And finally, as an intermediate case, we
may also consider the situation in which M + 12 = O(9).
Assuming again that 62 ~ ¢, it turns out that the dis-
persive and dissipative terms of Eq. (15) are of the same
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order. In this case, no term is neglected, and the gen-
eralized Boussinesq system, Eq. (15), will govern the
bulk velocity and surface perturbations of the Bénard-
Marangoni system. Upon specialization to waves moving,
say, to the right, each one of these three cases will lead
to a single evolution equation for the surface displace-
ment, which will be, respectively, the KdV, Burgers, and
KdV-Burgers equations. Finally, we would like to call
the attention to the appearance of a new equation, which
is a dissipative generalization of the Boussinesq system,
and which seems to be a nonintegrable equation. The
usual Boussinesq system of equations, Eqgs. (17), may
be transformed into the classical Boussinesq equations,
also known as dispersive long-wave equations [9]. These

equations have already been shown to be integrable [10].
The solutions to KdV and Burgers equations have also
been extensively discussed in the literature [11]. How-
ever, the generalized Boussinesq system, as well as its
strictly dissipative version, seems not to have been han-
dled. The existence of analytical solutions, therefore, is
still an open issue.
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